
Sourcecode: Example3.c

Sourcecode: Example3.c ii

COLLABORATORS

TITLE :

Sourcecode: Example3.c

ACTION NAME DATE SIGNATURE

WRITTEN BY February 12, 2023

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

Sourcecode: Example3.c iii

Contents

1 Sourcecode: Example3.c 1

1.1 Example3.c . 1

Sourcecode: Example3.c 1 / 4

Chapter 1

Sourcecode: Example3.c

1.1 Example3.c

/***/
/* */
/* Amiga C Encyclopedia (ACE) Amiga C Club (ACC) */
/* -------------------------- ------------------ */
/* */
/* Manual: AmigaDOS Amiga C Club */
/* Chapter: Files Tulevagen 22 */
/* File: Example3.c 181 41 LIDINGO */
/* Author: Anders Bjerin SWEDEN */
/* Date: 93-03-15 */
/* Version: 1.0 */
/* */
/* Copyright 1993, Anders Bjerin - Amiga C Club (ACC) */
/* */
/* Registered members may use this program freely in their */
/* own commercial/noncommercial programs/articles. */
/* */
/***/

/* This program simply writes two strings to a file, moves the */
/* file cursor back some characters and then collects some */
/* characters in the middle of the file. This example does */
/* exactly what is explained in picture ReadWrite.pic . */

/* Include the dos library definitions: */
#include <dos/dos.h>

/* Now we include the necessary function prototype files: */
#include <clib/dos_protos.h> /* General dos functions... */
#include <stdio.h> /* Std functions [printf()...] */
#include <stdlib.h> /* Std functions [exit()...] */
#include <string.h> /* Std functions [strlen()...] */

/* The size of our buffer: (Remember to never */

Sourcecode: Example3.c 2 / 4

/* read more data than can fit your buffer!) */
#define MAX_LENGTH 50

/* Number of characters that we will read: */
#define READ_LENGTH 7

/* Set name and version number: */
UBYTE *version = "$VER: AmigaDOS/InputOutput/Example3 1.0";

/* Declared our own function(s): */

/* Our main function: */
int main(int argc, char *argv[]);

/* Main function: */

int main(int argc, char *argv[])
{

/* A "BCPL" pointer to our file: */
BPTR my_file;

/* The strings we want to save: */
UBYTE *string1 = "HELLO";
UBYTE *string2 = " WORLD";

/* Some memory where the data we read can be saved: */
UBYTE my_buffer[MAX_LENGTH];

/* Store here the number of characters (bytes) actually read/written: */
long actual;

/* Old file cursor position: */
int old_pos;

/* 1. Try to open file "RAM:Introduction.doc" as a new file: */
/* (If the file does not exist, it will be created. If it, */
/* on the the other hand, exist, it will be overwritten.) */
my_file = Open("RAM:Introduction.doc", MODE_NEWFILE);

/* Have we opened the file successfully? */
if(!my_file)
{

/* Inform the user: */
printf("Error! Could not open the file!\n");

/* Exit with an error code: */
exit(20);

}

Sourcecode: Example3.c 3 / 4

/* The file has now been opened: */
printf("1. File open!\n");

/* 2. We have now opened a file and the file cursor is pointing */
/* to the first character (byte) in our new file. We can now write */
/* the first string to the file: */
actual = Write(my_file, string1, strlen(string1));

/* Were all characters successfully saved? */
if(actual != strlen(string1))
{

/* NO! Problems while writing! */
printf("Writing error while saving the first string!\n");

}
else

printf("2. String 1 written!\n");

/* 3. Add the second string to the file: (Since we have not */
/* moved the file cursor since we wrote the first string */
/* this string will be added directly after the first one.) */
actual = Write(my_file, string2, strlen(string2));

/* Were all characters successfully saved? */
if(actual != strlen(string2))
{

/* NO! Problems while writing! */
printf("Writing error while saving the second string!\n");

}
else

printf("3. String 2 written!\n");

/* 4. Move the file cursor three characters from the */
/* beginning of the file: (We could equally well move */
/* the file cursor eight characters backwards from the */
/* current position or the end of the file.) */
old_pos = Seek(my_file, 3, OFFSET_BEGINNING);

/* Tell the uer where the file cursor was and is now: */
printf("4. File cursor moved!\n");
printf(" Old position: %d\n", old_pos);
printf(" New position: 3\n");

/* 5. Collect "READ_LENGTH" (7) number of characters: */
actual = Read(my_file, my_buffer, READ_LENGTH);

/* Did we get all characters? */
if(actual != READ_LENGTH)
{

/* Problems! Could not read all data as expected. */

Sourcecode: Example3.c 4 / 4

/* We have either reached an unexpected EOF or */
/* there was an error while we tried to read: */
if(actual == -1)

printf("Error while reading!\n");
else

printf("Unexpected EOF!\n");
}
else
{

/* Note that we only collected some characters in the middle */
/* of the file. There will therefore not be any NULL sign at */
/* the end of the collected string, so we have to put one */
/* one there ourself. (If we do not put a NULL sign at the */
/* end of the string and then later tries to print it there */
/* will probably come a lot of junk after the collected */
/* characters. The prinf() function will continue to print */
/* haracters until a NULL sign is reached.) */
my_buffer[READ_LENGTH] = NULL;

/* Some extra information: A "collection of characters" is */
/* like a string but with no NULL sign at the end, while a */
/* "string" is a collection of characters with a NULL sign */
/* at the end. Whenever you are using string functions in */
/* C you must make sure that you realy have a string, and */
/* not just a collection of characters. Otherwise a lot of */
/* unexpected things might happen! */

/* Print the string: */
printf("5. Read \"%s\"!\n", my_buffer);

}

/* 6. Close the file: (Since we can not do very much if the */
/* function will fail to close the file we simply ignore */
/* any returned errors.) */
Close(my_file);
printf("6. File closed!\n");

/* The End! */
exit(0);

}

	Sourcecode: Example3.c
	Example3.c

