Sourcecode: Example3.c

Sourcecode: Example3.c

] COLLABORATORS
TITLE :
Sourcecode: Example3.c
ACTION NAME DATE SIGNATURE
WRITTEN BY February 12, 2023

REVISION HISTORY

NUMBER

DATE DESCRIPTION

NAME

Sourcecode: Example3.c iii

Contents

1 Sourcecode: Example3.c 1
L1 Example3.c o e e 1

Sourcecode: Example3.c

Chapter 1

Sourcecode: Example3.c

1.1

/ %
/ *
/ *
/ *
/ *
/ *
/ *
/ *

*/
*/
*/
*/
*/
*/
*/
*/

Example3.c
/**‘k*k*******k*k‘k*k‘k*k**‘k‘k~k~k*k*k‘k*‘k**‘k‘k****k*‘k****‘k***‘k***********‘k*/
Amiga C Encyclopedia (ACE) Amiga C Club (ACC)

Manual: AmigaDOS Amiga C Club
Chapter: Files Tulevagen 22
File: Example3.c 181 41 LIDINGO
Author: Anders Bjerin SWEDEN

Date: 93-03-15

/ *
/ *
/ *
/ %
/ *
/ *
/ *
/ *

Version: 1.0
Copyright 1993, Anders Bjerin - Amiga C Club (ACC)

Registered members may use this program freely in their
own commercial/noncommercial programs/articles.

*/
*/
*/
*/
*/
*/
*/
*/

/***/

/ *
/ *
/ *
/ *

/ %

This program simply writes two strings to a file, moves
file cursor back some characters and then collects some
characters in the middle of the file. This example does
exactly what is explained in picture ReadWrite.pic

Include the dos library definitions: =/

#include <dos/dos.h>

the

.1

*/
*/
*/
*/

/+* Now we include the necessary function prototype files:
#include <clib/dos_protos.h> /* General dos functions...
#include <stdio.h> /* Std functions [printf()...]
#include <stdlib.h> /* Std functions [exit()..
#include <string.h> /* Std functions [strlen()...
/+ The size of our buffer: (Remember to never =/

*/
*/
*/
*/
*/

Sourcecode: Example3.c

2/4

/* read more data than can fit your buffer!) «/
#define MAX_LENGTH 50

/* Number of characters that we will read: x/
#define READ_LENGTH 7

/* Set name and version number: =x/
UBYTE *version = "S$VER: AmigaDOS/InputOutput/Example3 1.0";

/* Declared our own function(s): =x/

/% Our main function: =%/
int main(int argc, char *argv[]);

/* Main function: =/

int main(int argc, char xargvl[])

{
/* A "BCPL" pointer to our file: «/
BPTR my_file;

/* The strings we want to save: =/
UBYTE *stringl "HELLO";
UBYTE *xstring2 " WORLD";

/* Some memory where the data we read can be saved: =/
UBYTE my_buffer[MAX_LENGTH];

/* Store here the number of characters (bytes) actually read/written:

long actual;

/* 01d file cursor position: =*/
int old_pos;

/* 1. Try to open file "RAM:Introduction.doc" as a new file:

/* (If the file does not exist, it will be created. If it,
/* on the the other hand, exist, it will be overwritten.)
my_file = Open("RAM:Introduction.doc", MODE_NEWFILE);

/* Have we opened the file successfully? =/
if('my_file)
{
/* Inform the user: =/
printf("Error! Could not open the file!\n");

/* Exit with an error code: =/
exit (20);

*/
*/
*/

*/

Sourcecode: Example3.c

3/4

/* The file has now been opened: =/
printf("1. File open!\n");

/* 2. We have now opened a file and the file cursor is pointing

*/

/* to the first character (byte) in our new file. We can now write =*/

/+ the first string to the file:
actual = Write(my_file, stringl, strlen(stringl));

/* Were all characters successfully saved? =/
if(actual != strlen(stringl))
{
/* NO! Problems while writing! =/
printf("Writing error while saving the first string!\n");
}
else
printf("2. String 1 written!\n");

/+ 3. Add the second string to the file: (Since we have not =*/
/+ moved the file cursor since we wrote the first string */
/* this string will be added directly after the first one.) «/
actual = Write(my_file, string2, strlen(string2));

/* Were all characters successfully saved? =/
if(actual != strlen(string2))
{
/* NO! Problems while writing! =/
printf("Writing error while saving the second string!\n");
}
else
printf("3. String 2 written!\n");

/+ 4. Move the file cursor three characters from the */
/* beginning of the file: (We could equally well move «/
/+ the file cursor eight characters backwards from the =/
/* current position or the end of the file.) */
old_pos = Seek(my_file, 3, OFFSET_BEGINNING);

/* Tell the uer where the file cursor was and is now: =*/

printf("4. File cursor moved!\n");
printf(" 0l1ld position: %d\n", old_pos);
printf(" New position: 3\n");

/* 5. Collect "READ_LENGTH" (7) number of characters: =*/
actual = Read(my_file, my_buffer, READ_LENGTH);

/* Did we get all characters? */
if (actual !'= READ_LENGTH)
{

/+ Problems! Could not read all data as expected. =*/

*/

Sourcecode: Example3.c

4/4

/* We have either reached an unexpected EOF or */
/+ there was an error while we tried to read: */
if(actual == -1)

printf ("Error while reading!\n");
else

printf ("Unexpected EOF!\n");
}

else

{

/+ Note that we only collected some characters in the middle
/* of the file. There will therefore not be any NULL sign at

/* the end of the collected string, so we have to put one
/+ one there ourself. (If we do not put a NULL sign at the

/* end of the string and then later tries to print it there

/* will probably come a lot of junk after the collected

/* characters. The prinf () function will continue to print
/* haracters until a NULL sign is reached.)
my_buffer[READ_LENGTH] = NULL;

/* Some extra information: A "collection of characters" is
/* like a string but with no NULL sign at the end, while a
/* "string" is a collection of characters with a NULL sign
/+ at the end. Whenever you are using string functions in

/+ C you must make sure that you realy have a string, and

/* not just a collection of characters. Otherwise a lot of
/* unexpected things might happen!

/* Print the string: =/
printf("5. Read \"%s\"!\n", my_buffer);

/+* 6. Close the file: (Since we can not do very much if the
/+ function will fail to close the file we simply ignore

/* any returned errors.)

Close(my_file);

printf("6. File closed!\n");

/* The End! =*/
exit(0);

*/
*/
*/
*/
*/
*/
*/

*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/

	Sourcecode: Example3.c
	Example3.c

